skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hessen, Dag"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In recent years, unexplained declines in lake total phosphorus (TP) concentrations have been observed at northern latitudes (> 42°N latitude) where most of the world's lakes are found. We compiled data from 389 lakes in Fennoscandia and eastern North America to investigate the effects of climate on lake TP concentrations. Synchrony in year‐to‐year variability is an indicator of climatic influences on lake TP, because other major influences on nutrients (e.g., land use change) are not likely to affect all lakes in the same year. We identified significant synchrony in lake TP both within and among different geographic regions. Using a bootstrapped random forest analysis, we identified winter temperature as the most important factor controlling annual TP, followed by summer precipitation. In Fennoscandia, TP was negatively correlated with the winter East Atlantic Pattern, which is associated with regionally warmer winters. Our results suggest that, in the absence of other overriding factors, lake TP and productivity may decline with continued winter warming in northern lakes. 
    more » « less
  2. Abstract Lakes are significant players for the global climate since they sequester terrestrially derived dissolved organic carbon (DOC), and emit greenhouse gases like CO 2 to the atmosphere. However, the differences in environmental drivers of CO 2 concentrations are not well constrained along latitudinal and thus climate gradients. Our aim here is to provide a better understanding of net heterotrophy and gas balance at the catchment scale in a set of boreal, sub-Arctic and high-Arctic lakes. We assessed water chemistry and concentrations of dissolved O 2 and CO 2 , as well as the CO 2 :O 2 ratio in three groups of lakes separated by steps of approximately 10 degrees latitude in South-Eastern Norway (near 60° N), sub-Arctic lakes in the northernmost part of the Norwegian mainland (near 70° N) and high-Arctic lakes on Svalbard (near 80° N). Across all regions, CO 2 saturation levels varied more (6–1374%) than O 2 saturation levels (85–148%) and hence CO 2 saturation governed the CO 2 :O 2 ratio. The boreal lakes were generally undersaturated with O 2 , while the sub-Arctic and high-Arctic lakes ranged from O 2 saturated to oversaturated. Regardless of location, the majority of the lakes were CO 2 supersaturated. In the boreal lakes the CO 2 :O 2 ratio was mainly related to DOC concentration, in contrast to the sub-Arctic and high-Arctic localities, where conductivity was the major statistical determinant. While the southern part is dominated by granitic and metamorphic bedrock, the sub-Arctic sites are scattered across a range of granitic to sedimentary bed rocks, and the majority of the high-Arctic lakes are situated on limestone, resulting in contrasting lake alkalinities between the regions. DOC dependency of the CO 2 :O 2 ratio in the boreal region together with low alkalinity suggests that in-lake heterotrophic respiration was a major source of lake CO 2 . Contrastingly, the conductivity dependency indicates that CO 2 saturation in the sub-Arctic and high-Arctic lakes was to a large part explained by DIC input from catchment respiration and carbonate weathering. 
    more » « less
  3. This dataset accompanies a paper submitted for publication to Limnology and Oceanography Letters, expected publication year 2023, by Isles et al., entitled "Widespread synchrony in phosphorus concentrations in northern lakes linked to winter temperature and summer precipitation." This dataset comprises April-November median TP concentrations for 389 lakes in Fennoscandia, the north-central and northeastern USA, and central to eastern Canada, between 1998 and. 2017. The dataset also includes seasonal means for climate variables divided into winter (DJF), spring (MAM), summer (JJA), and fall (SON) means of air temperature, wind speed, and precipitation. The data all originate with publicly collected datasets, and many data source have data from additional time periods or for additional variables collected over longer time periods available from websites or through contact forms. 
    more » « less
  4. Boreal lakes are the most abundant lakes on Earth. Changes in acid rain deposition, climate, and catchment land use have increased lateral fluxes of terrestrial dissolved organic matter (DOM), resulting in a widespread browning of boreal freshwaters. This browning affects the aqueous communities and ecosystem processes, and boost emissions of the greenhouse gases (GHG) CH 4 , CO 2 , and N 2 O. In this study, we predicted biotic saturation of GHGs in boreal lakes by using a set of chemical, hydrological, climate, and land use parameters. For this purpose, concentrations of GHGs and nutrients (organic C, -P, and -N) were determined in surface water samples from 73 lakes in south-eastern Norway covering wide ranges in DOM and nutrient concentrations, as well as catchment properties and land use. The spatial variation in saturation of each GHG is related to explanatory variables. Catchment characteristics (hydrological and climate parameters) such as lake size and summer precipitation, as well as NDVI, were key determinants when fitting GAM models for CH 4 and CO 2 saturation (explaining 71 and 54%, respectively), while summer precipitation and land use data were the best predictors for the N 2 O saturation, explaining almost 50% of deviance. Our results suggest that lake size, precipitation, and terrestrial primary production in the watershed control the saturation of GHG in boreal lakes. These predictions based on the 73-lake dataset was validated against an independent dataset from 46 lakes in the same region. Together, this provides an improved understanding of drivers and spatial variation in GHG saturation in boreal lakes across wide gradients of lake and catchment properties. The assessment highlights the need to incorporate multiple explanatory parameters in prediction models of GHGs for extrapolation across the boreal biome. 
    more » « less
  5. null (Ed.)
    Abstract Lake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we use 32 million temperature measurements from 139 lakes to quantify thermal habitat change (percentage of non-overlap) and assess how this change is exacerbated by potential habitat constraints. Long-term temperature change resulted in an average 6.2% non-overlap between thermal habitats in baseline (1978–1995) and recent (1996–2013) time periods, with non-overlap increasing to 19.4% on average when habitats were restricted by season and depth. Tropical lakes exhibited substantially higher thermal non-overlap compared with lakes at other latitudes. Lakes with high thermal habitat change coincided with those having numerous endemic species, suggesting that conservation actions should consider thermal habitat change to preserve lake biodiversity. 
    more » « less
  6. Abstract Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change. 
    more » « less